

Efficient Site Design

Michael Peacocke michael@satpty.com SAT Pty Ltd

Synopsis

The greatest spend in establishing new mobile radio/telecommunication sites is invariably in the real estate, the access, civil works, establishment of tower/building structures and power. Experience shows that this can equate to >90% of the capital cost. So why is this part of the project so often poorly considered in our build of radio infrastructure projects? This presentation deals with some lessons learned, oversights and pitfalls in establishing sites and some future strategies and building checklists to capture fundamentals of what we need.

- regulations governing site builds
- concept of right sizing
- number of sites growing
- concept of the value of a site and tower in real estate terms
- remoteness multiplier
- building site and tower structural survey databases
- practical trumps theoretical
- impact of increasing regulation (tickets, inductions, grinding pegs off, fencing)
- increasing environmentalism (managing aesthetics, radiation to public)
- checklist for site surveys

Disclaimer

These are my views. All care, no responsibility.

No one can be an expert on everything.

Inherent Value of a Site / Tower

a) It is Commercial Real Estate with an inherent commercial value (Value = x times the annualised Rate of return after costs. Typically, x will be 5.)

b) Value function of Captive market, location, (High Density to Remote, a bit like ACMA rates).

c) Exclusivity (I.E., is there only one site available).

d) Supply/Demand.

e) Coverage Profile.

f) Access.

g) Amenity (suitability for what you are trying to achieve. Is it an easy Landlord to deal with etc)

h) Facility (Is the tower suitable with capacity, is the equipment room suitable, is the Power supply and HVAC suitable with capacity)

i) Trade off between lease rather than own and operate.

SAT have built a database valuing sites to aid carriers when assessing the value of a site (Value = a+b+c+d+e+f+g+h+i).

Regulations Governing Site Builds

Wind Loading / Structural Design

-AS 1170 Code upgraded in 2011, again in 2021

-2011 the wind-loading parameters became more stringent

-2021, (new wind region maps, region B and C have increased in size,

C cyclonic and D extreme cyclonic)

This theme is likely to continue with recent Global events.

Steel Design

-AS 3995- Design of steel lattice towers and masts

Concrete Design

-AS 3600: 2018 Concrete Structures, Steel & Tendons

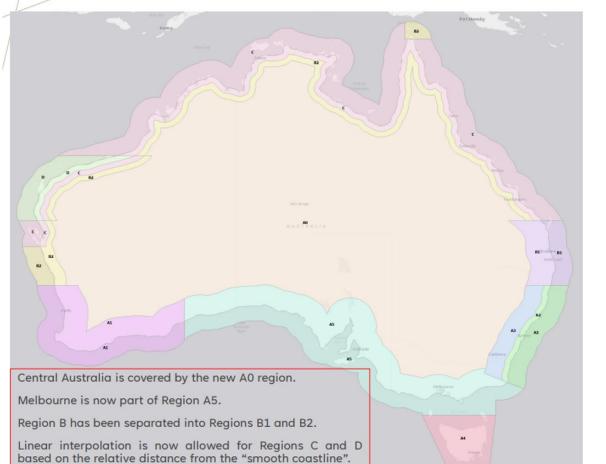
Electrical Design

-AS/NZ 3000 - The Wiring rules

-AS 3010.1 Generating Sets.

-AS 45091 Australian Skills Qualification

Guidelines


-issued by Clients. (Optus, Telstra, State Governments)-Sustainability requirements (Power, disaster withstanding/ recovery)

Mandatory OHS

-Climbing, Safety, Fencing, increasing Public awareness, ARPANZA

Upcoming events: One-day conference & dinner | Brisbane 27th July 2023

WIND REGION MAPS – AUSTRALIA

Optimising / Right Sizing / Minimisation / Value Engineering

Sizing the tower height - (polynomial cost as a function of height), LOS, coverage area, consider reducing height, access, alternate tower type

Sizing the power can easily have quadruple to 10-fold ripple effect cost (6-10 dB cost in radio speak)

Earthing, lightning protection considerations

Critical point when uneconomic to connect to grid, definition of a solar site

Access and serviceability costs (track)

CapEx versus lease.

Optimising indoor/outdoor mix of equipment (move to outdoor)

Dissipating heat

Getting rid of PIM (Passive intermodulation)

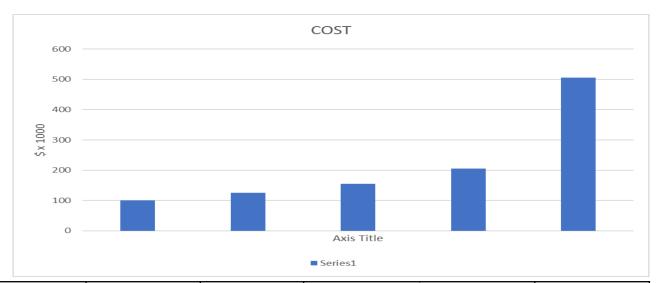
Serviceability

Reliability Calculations

TOTAL COST OF OWNERSHIP MODEL/ANALYSIS.

Electrical Design – Example

Adding 6 extra channels could add ~2 KW peak load onto the power system \Rightarrow requiring addition battery capacity \Rightarrow power AC to DC power upgrades \Rightarrow heightened max demand \Rightarrow additional cooling \Rightarrow transformer upgrade \Rightarrow transmission line upgrade


In limit 5 x the Peak Load capacity (note doesn't account for site autonomous power systems which can be much greater cost)

Equipment Load	AC/ DC Power Supply upgrades	Equipment Room Cooling upgrades	Max Demand upgrades add 10 kVA	Transformer upgrades	LV or HV Line upgrade
~Peak 2 kVA	Add charging ability	Add Max~5kVA		415/11,000V Upgrade by 10kVA	Maybe needs upgraded
~Steady State 1.5 kVA	60A at 48V=~3kVA	Steady State ~2kVA	*		approved
Power consumption		Main 16 hrs, second summer			~
typically 300-400W per channel		8 hrs day, DC fan 8 hrs winter less (30 KWhr)			to the
2kW for 6 channels +		EER (high 3's)			
peripherals (router,					
microwave)					

Real Cost of Power System Provisioning

Equip	\$100K	\$100K	\$100K	\$100K	\$100K
DC Power Supply upgrades		\$25K	\$25K	\$25K	\$25K
Cooling upgrades			\$15K+\$15K	\$15K+\$15K	\$15K+\$15K
Transformer Upgrades				\$50K	\$50K
Power Line upgrades (example 2 Km's)					\$300K
running total	\$100K	\$125K	\$155K	\$205K	\$505K

Operating Expenditure (OpEx)

2kVA load equates to 2.2 x 24 x 365 kWhr/year = 19,272 kWhr or \$3854.40 per year (at 20c / kWhr) RAW LOAD

Max Load ~10kVA

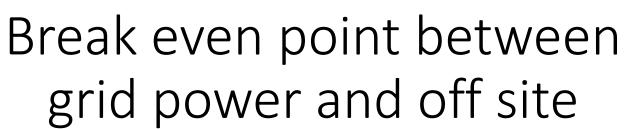
~ADMD load is more like 4kVA ~ \$7708.80 per year (at 20c / kWhr) aggregate system

(typically, 2-10 times a domestic bill) - Not insignificant, not environmental.

Load Minimisation

How can we reduce the electrical load at a site.

- -Strip out what's not required (lights, auxiliaries, overkill Hot Standby Duality)
- -Smart management of devices (turn on and off, pick charging times)
- -Optimise with duty cycles / batteries
- -Build to demand not excess. (modular if necessary)
- -Optimise and minimise cooling cycles, fans not A/C etc
- -Location of equipment out of the sun with passive cooling skins/double skins
- -Move Loads outside (growing theme with 3G/4G/5G and link ODU, all outdoor)



Winter / Alpine Climates

- -As lots of sites are top of mountain
- -Trickle heat (maybe use the residual heat from the equipment)
- -Retain passive heat
- -Minimise airflow

Define 'off grid'. Cost where TCI over x years is better than cost of connect plus kWhr expectation

-Typically, a 10-year TCI analysis +/-

-Derive a table of kWhr total cost versus off site and minimise as per previous steps

\$200-300k not going to buy much... or unusual

On Grid Cost		Off Grid Cost
Cost to connect	<	CapEx of 'Solar' System
OpEx cost of electricity bill (increment with CPI+)		

Earthing and Lightning Protection

Protects People and Equipment

To define the nature of an LPS

-IEC 62305 risk assessment

-Soil resistivity

-Good Housekeeping, Earthing kits applied top and bottom, bends and into equip room (plus 10m intervals)

-No earth loops. Separate Comms and Electrical Earths

Equipment Room Design


Continuing the example from above. Where do we put all this 'stuff'. Ie Footprint increase ~900%, Volume increase ~2300%

Our Outdoor half size 19' equipment rack (600 x 600 x 1100)	FOOTPRINT 1 m ² VOLUMETRICALLY = 0.596 m ³
Include plinth 1000 x 1000 x 200	
¹ / ₂ x 19' rack for Mobile Radio Base station (600 x 600 x 1100)	FOOTPRINT 9m ² VOLUMETRICALLY = 14.4 m ³
1 x 19'rack for Power Supply System and batteries (600 x 600 x 1100)	
= equipment room, minimum 2400 x 2400 x 2400 (for erganomics)	
-concrete plinth to support equipment room (3000 x 3000 x 200)	
Outdoor area for mounting 2 split air conditioners (typically 600 x 600 x 300 each)	

Real Estate

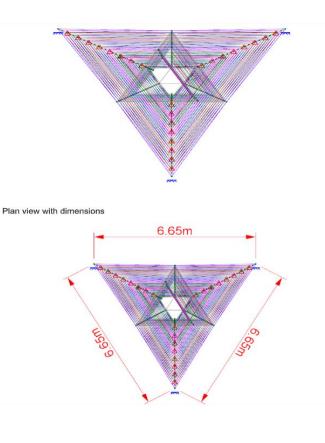
Lattice Tower Installation

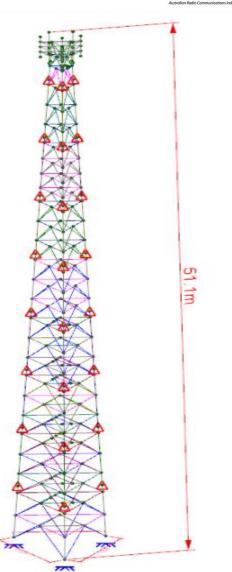
Tower Modelling

-SAP

-Atena

-Tekla


-Bentley


-CheckPole

-RocPole

-Finite analysis/calculus based.

Pre loaded codes and antenna systems

Dimensioning a Tower

-Height requirement

-Strength and loading requirement

(Antenna Matrix)

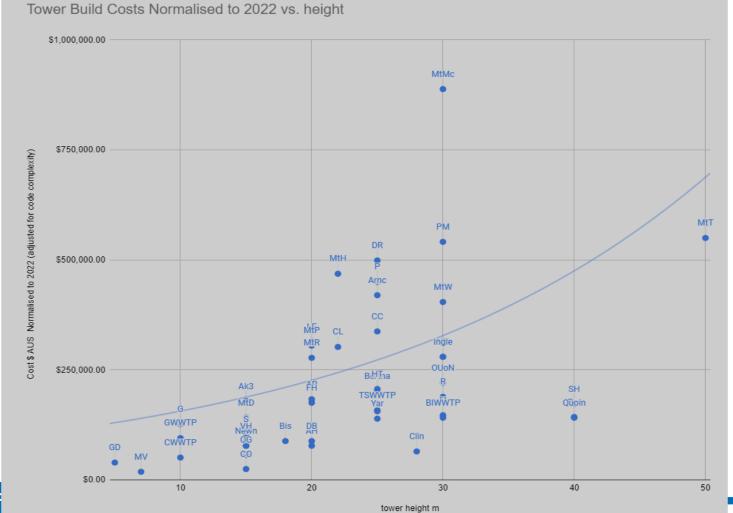
-Locating

-Foundation Design

-Installation

-Feeders

(ancillaries Hut, Power, Fence..)

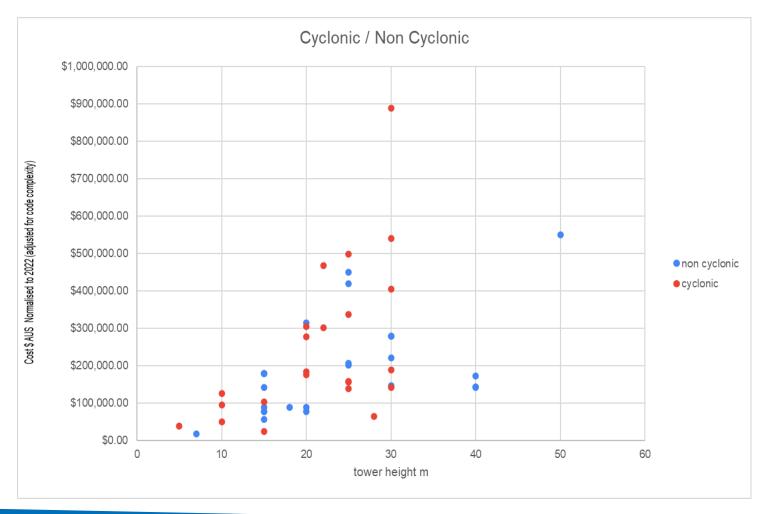


Benchmarking Costs

Extract from SAT database. 60 sites with detailed build

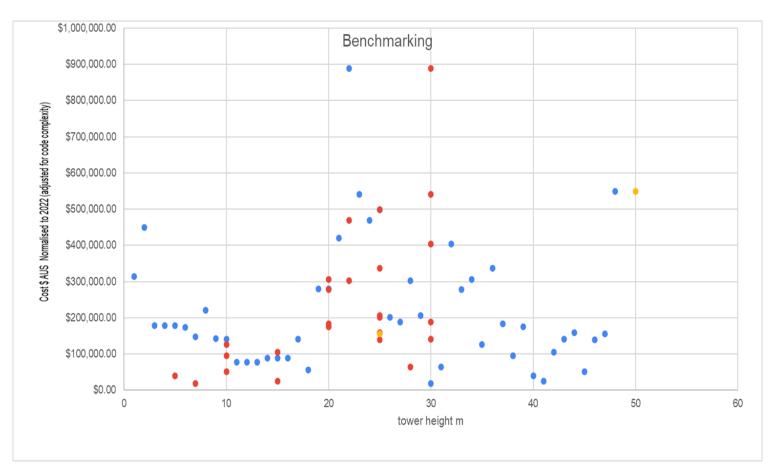
costs.

Extract from SAT database. 60 sites with detailed build costs.


53

Cyclonic / Non-Cyclonic

Extract from SAT database. 60 sites with detailed build costs.

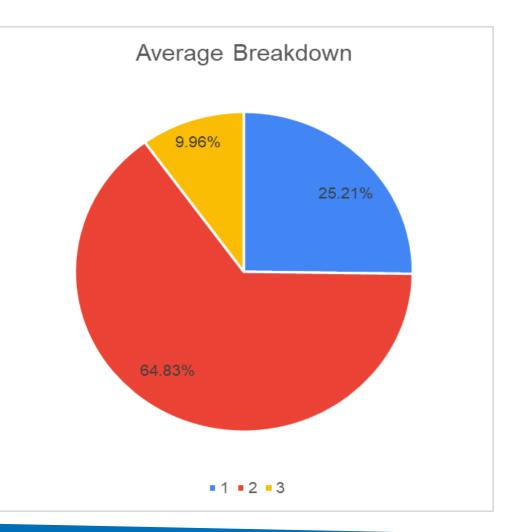


Pre 2011, 2011-2019, Post 2019

-CPI multiplier applied

-Normalising Multiplier of 2.11 applied pre-2011.

-Normalising multiplier of 1.09 applied 2011-2021.


Height	Name	Foundations	Installation/Services	Tower Hardware	Total Cost
25	нт	26.79%	29.56%	43.65%	\$ 201,588.00
25	R	20.31%	67.41%	12.28%	\$ 206,797.34
30	АР	26.34%	71.18%	2.48%	\$ 888,360.00
30	CL	16.63%	76.17%	7.21%	\$ 541,200.00
22	РМ	30.31%	64.98%	4.71%	\$ 468,600.00
25	TSWWTP	18.02%	77.08%	4.90%	\$ 498,960.00
30	Yar	6.68%	87.58%	5.74%	\$ 404,481.00
20	MtR	38.19%	45.93%	15.89%	\$ 277,585.00
20	MtP	43.22%	42.37%	14.41%	\$ 305,406.95
10	MtH	60.95%	18.53%	20.52%	\$ 126,896.00
25	Bertha	23.27%	65.41%	11.32%	\$ 337,634.00
20	С₩₩ТР	7.87%	84.23%	7.89%	\$ 183,546.00
ming even	ts: Ohe-day conferen	ce4& d inner Brisba	ne ⁰ 2 ^{1/4%} July 2023	33.62%	\$ 95,172.00
				1.070/	

Foundation / Installation / Tower

Yellow = Tower Hardware \$32,319 Blue = Foundation \$81,772 Red = Installation \$210,275 60 tower average Medium tower height 21m Average cost = \$324,367

\$

Checklist for Site Surveys

- Regulations governing site builds
- Concept of right sizing.
- Number of sites growing.
- Concept of the value of a site and tower in real estate terms.
- . Building site and tower structural survey databases.
- Practical trumps theoretical.
- Impact of increasing regulation (tickets, inductions, grinding pegs off, fencing)
- Increasing environmentalism (managing aesthetics, radiation to public,)

Technology Improvements on Tower Loading

0	LD	NEW		
10%	ø3.7m antenna or above			
10%	ø3m antenna	5%	ø2.4m antenna or above	
20%	ø2.4m antenna	20%	ø1.2m antenna	
20%	ø1.8m antenna	25%	ø0.9m antenna	
20%	ø1.2m antenna	25%	ø0.6m antenna	
20%	Ø0.6m antenna	25%	ø0.3m antenna	

-Note benchmark for wind loading of 3.0m antenna in Australia in region "a" 3m = 20 kN (old AS 1170.2 code) Use area ratio to adjust this up and down -Similar improvement in capacity (2 Mbps gone to ~400 Mbps, 200-fold, reliability up, LSI up)

SITE SURVEY FORM				www.satpty.com					
Summary									
SITE NAME:							ACMA ID or B	FSNA ID	
Date									
Ву									
Track General (Condition			uitable for atbed Truck/Cra	ane/Concre	te	Permissions /	[/] Keys required	
Site Location									
GPS LOG			Lat		Lo	ng		Comment	
Tower <u>Centre</u>									
Compound Ga	te								
Access Waypoi	int 1 ()							
Access Waypoi	int 2 ()							
Access Gate									
detailed GPS ac	cess log taker	n			I			1	
structure Detai	ls								
Structure type	□ Building	Pole 🗆			Tower 🗆]			
		wood	Steel	spun concrete	Lattice	G	uyed		
				concrete	+		4 leg		
Manufacturer			Model				h nameplate		
Structure height	t	[(taken with a laser		-			
Access / Ladder		Access:			Lad	lder	Yes 🗆 No 🗆		
Fall arrest fitted Yes 🗆 No 🗆] ManufacturerModelkN			kN.		
Last inspected						(Current Yes/no	1	
Notes									
Amenity:									
Expectation on Lo									
Suitability for nev									
Condition of Tow	er / general Mi	aintenance	-						
Cable run:									

Documentation and Photos / Videos					
Documents to Attain	Site Plan: Site Access Plan:				
	Compound Plan:				
	Compoun	Compound Layout			
	Foundatio	n As built:			
	Tower As				
	Tower Stru	uctural Details:			
	Structural				
		pp Drawings:			
		t Room Fixation:			
		t Room Layout:			
		Schematic:			
	Earthing D Antenna S				
	Feeder Scl				
		ed drawings:			
	Solar Drav	_			
		r Drawing:			
		ical Assessment:			
Foundations / Guy		Completed			
Anchors inspected		Photograph any defects			
& Photographed		Comments:			
Climb structure		Photograph defects & label locations on tower elevation dwg			
& record all		Use Highest Resolution Practical			
defects		Completed			
In a separate		Comments:			
report					
Check condition of galvanizing		new/ just off colour / tarnished and weathered/surface rust/severe rust			
Check a sample		Check 5 random bolts on each face for tightness			
of bolts for		Completed			
tightness		Comments:			
Check antenna	Completed				
locations against		Update tower elevations (each antenna's to be shown only once on the elevations)			
drawings		Comments:			
Check Antenna		Completed (bent missing elements/corroded mounts/ torn radome covers/ODU earthing)			
/Feeders for		Photograph any defects			
defects/damage		Comments:			

.

Capture all	Photograph Antenna nameplate (align antenna schedule & elevation dwgs)			
available	Update Antenna Schedule			
antenna details				
Check antenna	Provide updated info for RCSMB corrections (on the existing RCSMB document)			
against RCSMB	Completed			
Inspect lightning	Grounding kits fitted at top & bottom of all RF feeders 🗆			
protection	Surge arrestors fitted at gland plate			
	Gland Plate grounded to site earth			
	Highest point is a DC grounded Antenna or a lightning finial			
	Comments:			
Inspect	No corrosion/ mechanical damage/bolts are tight			
Structure	Completed			
earthing	Comments:			
connections				
Conduct a Site	As per Site earth test method provided (3 pole 62% method)			
Earthing test	Indicative reading (A) (Ohms)			
-	(current probe at 20m & 50m from site boundary, voltage probe at 62% of current probe distance)			
	If (A) is greater than 30 Ohms conduct a full test			
	(10 tests out to 100m from site boundary)			
	Final test result (Ohms)			
	Record tests on provided spreadsheet			
Photograph	Via Drone			
each tower face	haleher)			
and tower leg Completed				
Photograph the	Via Drone (at least 2 photo's taken directly above the structure center, encompassing the complete site)			
overall site	Completed			
layout				
Photograph the	Completed			
cable ladder	Type of cable support fitted []			
Photograph the	Completed			
gland plate				
All RF feeders	Yes 🗆 No 🗆			
are labelled at	Comments:			
the gland plate				
& antenna				
connection				
ls there a	Yes 🗆 No 🗖			
Geotechnical				
assessment				
Review latest	Are all antenna included in the Structural assessment?			
Structural	Comments:			
assessment				

Vegetation	Any antenna obstructed by nearby trees
obstruction	Yes (photograph) No
	Measure the vegetation heights for the closest trees in each cardinal direction
	N
Aviation	Yes 🗆 No 🗖
warning lights	Comments:
fitted.	
Power Feed:	

POWER SYSTEMS

AC FEED TO SITE	1P / 3 Ph	11 KV Transformer spotted
	Meter Details:	Photograph
	Photograph	
SOLAR PANELS	Type: Qty: Array Size: Regulator Details: (Photograph all)	
GENERATOR	Туре:	
	Details:	
	Mtce records:	
	Photograph:	
	Last Started:	
	Photograph	
BATTERIES	Type: Strings: Total number: Date into service: Tested: Photograph	
OTHER (Wind, Fuel Cells, Water)		

Conclusions

Consider value engineering, right sizing, conservatism costs. Lack of considering the full engineering design can be costly particularly regarding the power and structural costs. easily able to blow out to typically 10x the Radio Network costs. This usually dominates the cost expectations for a network rollout

Power on Site

- Reduce equipment dimensioning (functionality, trunking example, capacity calculations, consumption, cooling requirement). Think about scalable upgrades when you need, modular.
- How can we reduce power footprints (passive cooling, double skins, out of the sun external placement, external heat sink, minimising kVA's of cooling, smart approach to Battery charging or generator operation)
- Strip back unnecessary equipment loads (lights, cold standby)
- With solar systems equate the Total Lifecycle Cost (x years), in terms of expectation of kWHr

Tower Loading

- Reducing antenna footprints and size with technology
- Dropping height where necessary, using logical locations for access. Leasing space rather than own and operate

Tower Building

- Survey site and confirm important parameters, (access, height required, antenna table to enable tower specification)
- Understand Geology (Geotech report), site layout restrictions (Parks, Heritage, boundary, footprint)

Real Estate Footprint and Loading

• Reducing real estate footprints and volume. Consider the lease model rather than site/tower own and operate PROPERLY SURVEY THE SITE AND CAPTURE ALL THE RISKS, CAVEATS, PARAMETERS

"The problem with radio, is that it is too reliable".

Thank you